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Abstract--This is a comparative study of inductive learning and statistical methods using the simulation 
approach to provide a generalizable results. The purpose of this study is to investigate the impact of 
measurement scale of explanatory variables on the relative performance of the statistical method (probit) 
and the inductive learning method (1D3) and to examine the impact of correlation structure on the 
classification behavior of the probit method and the 1D3 method. The simulation results show that the 
relative classification accuracy of lD3 to probit increases as the proportion of binary variables increases 
in the classification model, and that the relative accuracy of lD3 to probit is higher when the covariance 
matrices are unequal among populations than when the covariance matrices are equal among 
populations. The empirical tests on ID3 reveal that the classification accuracy of lD3 is lower when the 
covariance matrices are unequal among populations than when the covariance matrices are equal among 
populations and that the classification accuracy of lD3 decreases as the correlations among explanatory 
variables increases. 

1. ~ T R O D U C T I O N  

Classification refers to separating distinct sets of objects 
or observations and allocating new objects or observa- 
tions into previously defined groups. Classification needs 
an algorithm to separate and allocate objects or observa- 
tions. This algorithm is called a classification technique. 
The ultimate goal of a classification method is to provide 
the relevant outcome or to replicate the expert's judg- 
ment. The relative performance of different classification 
techniques may depend on data conditions. 

Classification studies in business have traditionally 
used statistical techniques. Recently, inductive learning, 
a subfield of artificial intelligence (AI), began to be 
applied to the classification research. Examples include 

* To whom all correspondence should be addressed. 

stock market prediction (Braun & Chandler, 1987), 
scholarship/fellowship grant case (Garrison & Michael- 
sen, 1989), accounting inventory method choice (Liang 
et al., 1992), bankruptcy prediction (Chung & Tam, 
1993), asset writedown (Ragothaman & Naik, 1994), 
executive compensation planning (Michaelsen and 
Swigger, 1994), and text-to-speech mapping (Dietterich, 
Hild & Bakiri, 1995). 

Inductive learning uses a data set of examples and 
determines a relationship between these examples via 
inductive inference. The induced rules can then be used 
to predict outcomes or to replicate judgments. The 
inductive learning approach is different from the statis- 
tical approach in many aspects though both approaches 
are inductive in nature. The key difference is that 
traditional statistical methods use continuously varying 
parameters to express classification criteria through 
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numerical manipulation while inductive learning meth- 
ods describe concepts through the manipulation of 
symbolic representations (Rendell, 1986; Greene, 1987). 

Most studies applying inductive learning to classifica- 
tion chose an application domain and selected attributes 
appropriate for the domain of their choice. The selection 
of attributes was typically done through interviews with 
domain experts. These studies applied the inductive 
learning method to the classification problem and 
compared the predictive accuracy of the inductive 
learning method with the results from statistical methods 
or judgments of domain experts. Prior studies provided 
evidence regarding the performance of the inductive 
learning method in certain domains. However, they did 
not provide a general guideline to researchers as to the 
conditions under which inductive learning methods are 
preferable to traditional techniques. Messier & Hansen 
(1988) recognized the limited generalizability of results 
from previous studies and suggested that future studies 
should examine the performance of inductive learning 
algorithms in problem domains of different types and 
complexity. 

Mingers (1987) compared inductive learning and 
linear regression with respect to stochastic (noisy) data 
which can be characterized by random variations in 
additions to variation due to systematic effect of other 
factors. Arinze & Subbanarasimha (1994) chose the data 
set which were noisy and non-normally distributed 
(skewed) to test the relative efficiency of rule based 
induction to regression model. 

This study investigates the relative performance of 
inductive learning and statistical methods in order to 
identify the data conditions under which one approach 
has a relative strength over the other. Statistical methods 
frequently employed in classification research include 
multiple discriminant analysis (MDA), logit, and probit 
methods. The probit method is chosen in this study 
because it is a frequently used technique in recent 
classification studies.~ The ID3 method is chosen among 
various inductive learning algorithms because it has been 
the most widely used algorithm in inductive learning 
applications. 

The ID3 method (generally inductive learning meth- 
ods) assumes nominal attributes whereas the probit 
method (generally statistical models) assumes numeric 
attributes. The ID3 algorithm was developed to deal with 
nominal attributes. On the other hand, the probit method 
was developed for numeric variables. These basic 
assumptions of probit and ID3 lead to the hypothesis that 
the ID3 method may perform relatively better when 
nominal variables are used and that the probit method 

may perform relatively better when numeric variables 
are used. 

The impact of correlation structure on the classifica- 
tion performance has been a major concern of 
classification researchers. Statistical studies show that 
linear statistical models such as LDA (linear dis- 
criminant analysis), logit, or probit performed worse for 
unequal covariance matrices than for equal covariance 
matrices (Moore, 1973; Dillon & Goldstein, 1978) and 
that linear models could not satisfactorily cope with 
situations where the correlations were large (Schmitz et 
al., 1983; Schmitz, Habbema, & Hermans, 1985). There 
are few empirical evidence regarding the impact of 
correlation structure on the classification accuracy of the 
ID3 method. 2 The ID3 method, a nonparametric algor- 
ithm, is expected to be less sensitive to the inequality of 
covariance structure and the magnitude of correlations 
than the probit method. 

This paper intends to study the relative performance 
of the ID3 and probit, which are representative of 
inductive learning and statistical methods respectively, 
with respect to the measurement scale of attribute and the 
correlation structure. Simulation allows researchers to 
manipulate data conditions and enhance internal validity, 
and this makes the results more generalizable. This paper 
uses the simulation approach to provide the generalizable 
results. The rest of this paper is organized as follows. 
Section 2 presents a theoretical comparison of probit and 
ID3 together with empirical evidences of previous 
studies. In Section 3, the simulation design is developed 
and the ANOVA models are presented for the empirical 
test. Section 4 discusses the results. The last section 
provides a summary of major findings and the implica- 
tions of this study, and suggests limitations and some 
future research issues. 

2. COMPARISON OF PROBIT AND ID3 

Qualitative response models are regression models in 
which a dependent variable takes discrete values. The 
probit model, which is one of qualitative response 
models, has been frequently used in recent business 
classification studies. The binary decision by the ith 
individual is represented by a random variable Yi that 
takes the value of 0 or 1. Let Ui~ and Uio denotes the 
utilities of the two choices. U is a linear function of 
explanatory variables. A univariate binary probit model 
is defined by 

Pr(y~= 1)=Pr(U~, > U~o)=F(X;b), i =  1, 2 . . . . .  n. 

Qualitative response models such as probit and logit provide slightly 
better classification accuracy than MDA in recent studies (Vlachoniko- 
lis & Marriott, 1982; Schmitz et al., 1983). Judge et al. (1985, p. 761) 
provided a theoretical argument for the use of probit in preference to 
logit while Amemiya (I 981) noted that the use of probit or logit makes 
little difference except when data are heavily concentrated in the tails. 

z Tu (1989) tested the impact of the magnitude of correlations on the 
path length of the decision tree generated from inductive learning 
algorithms though this is not a direct test on the classification 
accuracy. 



Inductive Learning and Statistical Methods 211 

where {y~ } is a sequence of independent binary random 
variables taking the value 1 or 0, X~ is a vector of 
explanatory variables, b is a vector of unknown param- 
eters, and F is a cumulative distribution function of the 
normal distribution (Judge et al., 1985) 

Multinomial models are generalizations of the binary 
model. The utility that the ith individual derives from the 
choice of the j th alternative can be represented as 

Uij=X~b+e O 

where Xij is a vector of variables representing the 
attributes of the jth choice to the ith individual, b is a 
vector of unknown parameters, and e 0 is a error vector. A 
representative multinomial probit model is the MZ 
polychotomous probit model developed by McKelvey & 
Zavoina (1971, 1975). MZ probit model assumes that X 0 
is dichotomous or measured on at least an interval scale 
and that eij has a multivariate normal distribution. 

Probit models (generally regression-based models) 
and inductive learning methods are similar in that they 
both induce a relationship between independent and 
dependent variables from a number of observations. 
However, the probit method is developed in the domain 
of statistics while inductive learning is a subfield of 
artificial intelligence. 3 Naturally, different terms tend to 
be used in the two different domains. First of all, the 
difference of terminology needs to be clarified. 

Statistics Inductive learning 

case 
independent variable 
dependent variable 
derivation (estimation) sample 
validation (holdout) sample 

example 
attribute 
class 
training sample 
testing sample 

There are significant differences between probit and 
ID3 methods though their goals are similar. The Mz 
polychotomous probit model assumes that categories of a 
dependent variable are ordered. The issue of ordering 
does not arise in binary probit models. Probit models 
assume that independent variables are continuous with at 
least an interval scale of measurement though 0-1  
dummy variables may be used to represent nominal 
variables. The ID3 method assumes that dependent 
variables are measured on a nominal scale. ID3 can also 
deal with ordinal dependent variables by regarding 
ordered categories as nominal categories. The ID3 
method also assumes that independent variables are 

nominal though a variable of interval or ratio scale can 
be transformed into a nominal variable with two 
categories and be processed in the algorithm. 

Probit models assume normality of the error term 
while the ID3 method does not assume any specific 
distribution. Ex ante, nonparametric techniques may be 
appropriate for classification research in business con- 
sidering that the distributional assumptions of 
classification techniques are likely to be violated to some 
degree in most business research problems (Elliott & 
Kennedy, 1988). 

The relationship between independent and dependent 
variables is represented as a linear function in probit 
models (generally regression-based models) while the 
ID3 method (generally inductive learning algorithms) 
induces a decision rule which is logical rather than 
functional. The parameters of a linear function are 
estimated by the maximum likelihood estimation method 
for probit models while the formation of a decision tree 
is based on the entropy measure of information theory by 
Shannon (1964). These comparisons are summarized in 
Table 1. 

The differences in distribution assumption, relation- 
ship of independent and dependent variables, and 
modeling basis between probit and ID3 have, to a large 
extent, originated from the different assumptions on the 
measurement scale for independent variables between 
the two methods. Normality (generally a parametric 
characteristic), functional form, and maximum like- 
lihood estimation have been developed for numeric 
variables while nonparametric characteristics, decision 
rules, and the entropy measure are tailored to qualitative 
measurement. 4 

Generally speaking, statistical methods attempt to 
represent a classification model as a combination of 
attribute weights. All the attributes are numerically 
coded and the search for parameter weights is conducted 
through the mathematical manipulation of means, fre- 
quencies, and variances. The evaluation function that 
directs the search is based on a measure such as mean 
squared error, Bayes theorem, or maximum likelihood 
estimation. On the other hand, the inductive learning 
method sequentially builds systems of production rules 
by symbolic representation (Greene, 1987). 

The fundamental assumptions on the measurement 
scale for explanatory variables of the ID3 and probit 
methods lead to hypothetical statements that the ID3 
method performs relatively better when explanatory 
variables are nominal and that the probit method 
performs relatively better when explanatory variables are 
numeric. 

The empirical results in the AI literature are generally 

3Refer to Amemiya (1981) for the detailed description of probit 
models. Braun & Chandler (1987) provided a detailed presentation of 
the ID3 algorithm. Mingers (1987) discussed the differences between 
inductive learning and regression models. 

4 Hays (1973) noted that the entropy measure is more appropriate for 
qualitative measurement situation than statistical methods developed 
for numerical data. 



212 L Han et al. 

TABLE 1 
Comparisons of Probit and ID3 Methods 

Probit ID3 

Measurement scale for 
dependent variable ~ 

Measurement scale for 
independent variable 

Distribution assumption 
Relationship between 

independent and 
dependent variables 

Basis of modeling 

Ordinal Nominal 2 

Interval or ratio 4 NominaP 
Normal Nonparametric 

Linear function 
Maximum likelihood 

estimation 

Decision rule 
Entropy measure of 

information theory 

1 In binary cases, the measurement scale for the dependent variable does not 
matter. 
a ID3 method can deal with an ordinal dependent variable assuming that the 
ordered categories are nominal. 
3 ID3 method can handle a variable with interval or ratio scale by transforming 
it into a binary nominal variable. 
4 Nominal variables can be represented by 0-1 dummy variables in probit 
models. 

consistent with the above hypothetical statements. 5 
When attributes are all nominal, the classification 
accuracies of  inductive learning methods are very high 
(Quinlan, 1980, 1983; Shapiro & Niblett, 1982), 6 better 
than expert judgments  (Michalski & Chilausky, 1980), or 
better than statistical results (Garrison & Michaelsen, 
1989). On the other hand, the inductive learning 
algorithms perform worse than statistical methods when 
attributes are mostly numeric (Liang et al., 1992). These 
results are difficult to generalize because the studies 
selected different domains and the characteristics of the 
domains chosen are expected to affect the classification 
accuracies]  The statistics literature indicates that linear 
models perform worse when explanatory variables are all 
binary than when explanatory variables are all con- 
tinuous or mixed (Bayne et al., 1983) 

Some AI studies advocated transforming continuous 
variables into nominal variables for inductive learning 
algorithms. Paterson & Niblet (1982) noted that nom- 
inalization of  continuous variables may improve the 
classification accuracy of  the inductive learning method 
when noise is present to a substantial degree. Hoff, 
Michalski & Stepp (1986) suggested that continuous 
variables be categorized into a reasonably small number 

5 Studies using the small training samples (< 30) are not considered 
here due to the lack of reliability. 
6 These studies did not provide comparisons with statistical results or 
expert judgments. Classification accuracies achieved by these studies 
were above 98%. 
7 The prediction accuracies of inductive learning achieved in scientific 
domains (Buchanan et al., 1976; Michalski & Chilausky, 1980) and in 
the chess endgame (Quinlan, 1980, 1983; Shapiro & Niblett, 1982) 
were higher than those achieved in business domains (Braun & 
Chandler, 1987; Garrison & Michaelsen, 1989; Liang et al., 1992) 
because the scientifc domains and the chess endgame are more static, 
deterministic, and almost enumerative while business domains are 
more dynamic, probabilistic, and noisy. 

of  discrete values before they are used by inductive 
learning methods. 

3. R E S E A R C H  D E S I G N  

The impact of  measurement scale of  independent 
variable, which is a focus of  this study, is to be 
manipulated. In addition, the correlation structure, which 
has been a major issue in statistical classification studies, 
is to be manipulated. The simulation design is to 
discriminate between two populations. The multivariate 
normal distribution has been a standard procedure used 
to generate the multivariate continuous data in simula- 
tion. In addition, the technique to generate the 
multivariate discrete data from multivariate normal 
distribution has been well developed (Schmitz et al., 
1983). Hence, the multivariate normal distribution is 
chosen to generate continuous and discrete data simul- 
taneously. The data are generated from two 
eight-dimensional normal distributions using the 
RNMVN subroutine of IMSL STAT/LIBRARY: 8 

Population "T/" l : N 8 (/z 1, ~j  ) 

Population 7"r 2 :Ns(/-~, E2) 

where 

~', = (o, o, o, o, o, o, o, o) 

and 

~ = ( 0 . 6 ,  0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2). 

s IMSL STAT/LIBRARY is a collection of Fortran subroutines and 
functions for statistical analysis. RNMVN is a subroutine of IMSL to 
generate multivariate normal random numbers. Refer to IMSL STAT/ 
LIBRARY users' manual (1987) for details. 
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The mean differences of explanatory variables between 
two populations are set to vary to give a structure to the 
data. Three values of correlation structure (El, 2~2) are 
used in this study: (I, 1), (I, 41) and (~5, Es). 1 is an 
identity matrix. All the variances of the eight explanatory 
variables are I and every correlation coefficient is 0 in I. 
41 is equal to I except that all the variances of the eight 
variables are 4. The variances of eight variables are 1 and 
every correlation coefficient is 0.5 in E5.9 The correlation 
structure (1, 1) represents the situation in which variables 
are not correlated at all. (1, 41) represents the inequality 
of variances among two population. (Es, Xs) represents 
the data situation in which variables are highly corre- 
lated. 

The selection of the values for mean and covariance 
structure was based on previous simulation studies. As is 
the case with most simulation studies, such selection 
may look arbitrary on surface. However, the issue of 
importance in the simulation design of this study is the 
magnitude of correlations and the equality of covariance 
structure among two populations with different mean 
vectors rather than the particular nature of the mean and 
covariance structure. Thus, the foregoing selection of 
values does not affect the validity of any results. 

After generating the continuous variables, the vari- 
ables need to be made discrete into two categories in 
order to provide a nominal classification model. Let the 
mean difference with respect to the variable i be denoted 
by o~. The cut-off value to be used in this study is 1/2 ai 
(Schmitz et al., 1983; Tu, 1989) Let Xi denote the 
continuous variable and Z~ denote the respective binary 
variable. 

Zi= 1 ifXi> l/2ai 

0 otherwise. 

The model consisting of all continuous variables is 
called a numeric model. The 6 -2  mixed model includes 
six continuous variables and two binary variables. The 
4 -4  mixed model includes four continuous variables and 
four binary variables. The 2-6  mixed model includes 
two continuous variables and six binary variables. The 
explanatory variables to be dichotomized into binary 
variables will be selected randomly. The model con- 
sisting of all binary variables is called a nominal model. 
Therefore, five classification models are used in this 
study. Fifty runs will be made with samples of size 100 
in each cell. 

The ID3 method is chosen to represent the inductive 
learning algorithms and the probit method is chosen to 

9 The linear procedures performed reasonably in populations tructures 
characterized by low correlations (i.e. <10.21); poor results were 
obtained with use of linear procedures in population structures in which 
the correlations were high (i.e. >10.31) (Moore, 1973; Dillon & 
Goldstein, 1978). 0.5 is chosen as the value of considerably high 
correlation coefficient. 

represent the statistical methods. When classification 
accuracy is estimated from the same sample used for 
model specification, the estimate of classification accur- 
acy is biased upward because the classification model is 
tailored to the data. Techniques to avoid the overfitting 
problem include the holdout technique, jackknife pro- 
cedure, and bootstrapping. The holdout technique that is 
frequently used in classification research is used in this 
study. Half of the sample will be used as a training set 
and the other half as a testing set. The performance 
measure used in this study is the classification accuracy 
which is defined as the number of  holdout cases correctly 
predicted divided by the total number of holdout cases. 

ANOVA (analysis of variance) models are versatile 
statistical tools for investigating the relation between a 
dependent variable and one or more independent vari- 
ables. ANOVA is used, for the most part, to compare 
means of dependent variables in studies involving more 
than two groups. ANOVA has been the major method- 
ology for comparative studies of classification 
techniques to investigate the main and interaction effects 
of blocking and treatment factors which are mostly 
qualitative. The ANOVA technique is used in this study 
to investigate the statistical significance of the main 
and interaction effects of factors on the classification 
accuracy. 

In summary, there are three factors in this design: 

(1) measurement scale of explanatory variables: 
numeric, 6 -2  mixed, 4 - 4  mixed, 2-6  mixed, 
and nominal classification models, 

(2) correlation structure: (L 1), (1, 41), and 
(Es, Xs). 

(3) classification methods: probit and ID3. 

The measurement scale and correlation structure are 
used as blocking factors and the classification method is 
the treatment factor to be studied. Descriptive statistics 
of classification accuracy are provided for each of thirty 
situations (5 classification models x 3 correlation struc- 
tures × 2 classification methods). First, a three-way 
ANOVA is performed to investigate the statistical 
significance of all the main effects and interaction 
effects. Given the purpose of the research, the interaction 
effect between the measurement scale and the treatment 
is of special importance. The interaction effects between 
the equality of covariance matrices and the treatment and 
between the magnitude of correlations and the treatment 
are also of interest. 

For the detailed analysis, a two-way (measurement 
scale and correlation structure) ANOVA is applied to 
probit and ID3 in order to investigate the statistical 
significance of the impact of the measurement scale, the 
equality of covariance matrices, and the magnitude of 
correlations on the classification accuracies of probit and 
ID3. 
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4. RESULTS AND ANALYSIS 

The following notations are introduced to denote the 
respective blocking and treatment factors of the experi- 
mental design; 

(1) MEAS: the blocking factor representing the 
measurement scale of explanatory variables. 
This factor can take on five levels which are 
INT (numeric), M6-2  (6-2 mixed), M4-4  
(4-4 mixed), M2-6  (2-6 mixed), and NOM 
(nominal). 

(2) CORR: the blocking factor that represents the 
correlation structure. This factor has three 
levels which are I - I  (I, I), 1-41 (L 41), and 
H - H  (~5, "Zs). 

(3) METH: the treatment factor denoting the 
classification method. This factor can take on 
two levels which are PROBIT (probit method) 
and ID3 (ID3 method). 

The dependent variable, ACCU, represents the classi- 
fication accuracy which was previously defined as the 
number of holdout cases correctly predicted divided by 
the total number of holdout cases. 

The descriptive statistics for the respective blocking 
factor levels are presented in Table 2. The examination of 
Table 2 shows that the classification accuracy of the 
probit method decreases as the proportion of binary 
explanatory variables increases and that the classification 
accuracy of the ID3 method increases as the proportion 
of binary explanatory variables increases. The mean 
classification accuracy of the probit method decreases by 
0.0280 when all numeric explanatory variables are 
replaced by nominal variables. On the other hand, the 
mean classification accuracy of the ID3 method increases 
by 0.0212 when all numeric explanatory variables are 
replaced by nominal variables. The measurement scale 
has a consistent effect on the classification accuracy of 

the probit method across three levels of correlation 
structure. 

Table 2 reveals that both probit and ID3 perform the 
best under the correlation structure of (1, I), the second 
best under that of (/, 41), and the worst under that of 
(E~, Es). The classification accuracy of the two methods 
behaves in the same direction across the correlation 
structure though the impact of correlation structure on 
the classification accuracy of the probit method is 
different than that of  the ID3 method. 

The three-way ANOVA results for the effects of 
measurement scale, correlation structure, and classifica- 
tion method are given in Table 3. The main effects of the 
treatment factor METH and the blocking factor CORR 
are significant. This indicates that the classification 
accuracy is significantly different between the two 
classification methods and that the classification accur- 
acy differs as the correlation structure changes. The main 
effect of the blocking factor MEAS is not significant. 

The interaction effect between MEAS and METH is 
significant, which implies that the differences in classi- 
fication accuracy of probit and ID3 vary as the 
measurement scale changes. That is, the average classi- 
fication behavior of two classification methods varies for 
different levels of measurement scale. The results 
confirm the hypothesis that the relative classification 
accuracy of the ID3 method to the probit method 
increases as the proportion of binary variables increases 
in the classification model. ]° 

The interaction effect between CORR and METH is 
significant (at the 5% level), which implies that the 
differences in classification accuracy of probit and ID3 
vary depending on the correlation structure. The inter- 
action effect between MEAS and CORR is not 
significant, which implies that the differences in classi- 

~°The relative classification accuracy of ID3 to probit is the 
classification accuracy of ID3 over that of probit. 

TABLE 2 
Means (Standard Deviations) of Classification Accuracy by Measurement Scale, Correlation Structure, 

and Method 

Probit ID3 

I - I  1-41 H-H Total I - I  1-41 H-H Total 

INT 0.9116 0.8464 0.8320 0.8633 0.8544 0.8164 0.7940 0.8216 
(0.0573) (0.0531) (0.0577) (0.0659) (0.0599) (0.0747) (0.0616) (0.0703) 

M6-2 0.9008 0.8380 0.8252 0.8547 0.8552 0.8204 0.7956 0.8237 
(0.0614) (0.0537) (0.0651) (0.0687) (0.0606) (0.0676) (0.0598) (0.0673) 

M4-4 0.8940 0.8188 0.8140 0.8423 0.8688 0.8200 0.7956 0.8281 
(0.0607) (0.0592) (0.0648) (0.0717) (0.0606) (0.0541) (0.0718) (0.0696) 

M2-6 0.8832 0.8188 0.8124 0 .8381 0.8692 0.8212 0.7964 0.8289 
(0.0643) (0.0580) (0.0542) (0.0671) (0.0574) (0.0679) (0.0626) (0.0697) 

NOM 0.8784 0.8172 0.8104 0.8353 0.8864 0.8264 0.8156 0.8428 
(0.0564) (0.0643) (0.0649) (0.0691) (0.0576) (0.0521) (0.0519) (0.0623) 

TOTAL 0.8936 0.8278 0.8188 0.8467 0.8668 0.8209 0.7994 0.8290 
(0.0613) (0.0591) (0.0621) (0.0693) (0.0604) (0.0640) (0.0624) (0.0683) 
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TABLE 3 
Three-way ANOVA 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 3 I-I, 1-41, H - H  
METH 2 Probit, ID3 

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 29 1.6858 0.0581 15.43 0.0001 
Error 1470 5.5380 0.0038 
Corrected total 1499 7.2237 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0151 1.00 0.4060 
CORR 2 1.4005 185.87 0.0001 
METH 1 0.1176 31.21 0.0001 
MEAS*CORR 8 0.0080 0.27 0.9769 
MEAS* METH 4 0.1103 7.32 0.0001 
CORR* METH 2 0.0251 3.33 0.0360 
MEAS*CORR* METH 8 0.0092 0.31 0.9640 

fication accuracy under the three levels of correlation 
structure have the same size and sign across the different 
levels of measurement scale that are applied. In other 
words, the average classification behavior of each level 
of correlation structure is consistent across different 
levels of measurement scale. 

The factor of correlation structure incorporates two 
components of interest; the magnitude of correlations 
and the equality of the covariance matrices across 
categories. The preceding analysis summarized in Table 

3 examined the combined effect of the magnitude of 
correlations and the equality of covariance matrices. The 
effect of the equality of covariance matrices can be 
investigated by including only two levels of correlation 
structure, I-1 and 1-41. The effect of the magnitude of 
correlations can be analyzed by including I - I  and H - H  
for the correlation structure. 

The ANOVA analysis is repeated with two levels I - I  
and 1-41 for the correlation structure and the results are 
presented in Table 4. The main effect of CORR is 

TABLE 4 
Three-way ANOVA (Corr:/-/and 1-41) 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 2 I-I, 1-41, H - H  
METH 2 Probit,  ID3 

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 19 0.9840 0.0518 13.96 0.0001 
Error 980 3.6356 0.0037 
Corrected total 999 4.6196 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0094 0.63 0.6388 
CORR 1 0.7795 210.13 0.0001 
METH 1 0.0712 19.20 0.0001 
MEAS*CORR 4 0.0064 0.43 0.7854 
MEAS* METH 4 0.0863 5.82 0.0001 
CORR* METH 1 0.0246 6.63 0.0102 
MEAS*CORR* METH 4 0.0065 0.44 0.7793 
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TABLE 5 
Three-way ANOVA (Corr: I - I  and H-H) 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 2 I-I ,  1-41, H - H  
METH 2 Probit, ID3 

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 19 1.5036 0.0791 21.06 0.0001 
Error 980 3.6823 0.0038 
Corrected total 999 5.1859 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0084 0.56 0.6921 
CORR 1 1 . 2 6 3 1  336.15 0.0001 
METH 1 0.1332 35.44 0.0001 
MEAS*CORR 4 0.0024 0.16 0.9600 
MEAS* METH 4 0.0880 5.85 0.0001 
CORR*METH 1 0.0035 0.92 0.3375 
MEAS*CORR* METH 4 0.0051 0.34 0.8527 

significant. The statistical significance of CORR implies 
that the equality of covariance matrices affects the 
classification accuracy. The interaction between CORR 
and METH is significant (at the 5% level), which implies 
that the differences in classification accuracy of probit 
and ID3 are not consistent across the equal and unequal 
covariance matrices. The mean classification accuracy of 
the probit method decreases by 0.0658 when I - I  is 
replaced by 1-41 while the mean classification accuracy 
of the ID3 method decreases by 0.0459. This shows that 
the relative classification accuracy of the ID3 method to 
the probit method is higher when the covariances are 
unequal among populations than when the covariances 
are equal among populations. In other words, the 

classification performance of the ID3 method is less 
sensitive to the inequality of covariance matrices than the 
probit method while the classification accuracies of both 
probit and ID3 are lower under unequal covariance 
matrices than under equal covariance matrices. 

The ANOVA results with two levels l - I  and H - H  for 
the correlation structure are summarized in Table 5. The 
main effect of CORR is significant and greater than that 
in Table 4. This implies that both the magnitude of 
correlations and the equality of  covariance matrices 
affect the classification accuracy and that the magnitude 
of correlations has more impact on classification accur- 
acy than does the equality of covariance matrices. The 
interaction effect between CORR and METH is not 

TABLE 6 
Two-way ANOVA for Probit 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 3 I-I,  1-41, H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 14 0.9229 0.0659 18.05 0.0001 
Error 735 2.6842 0.0037 
Corrected total 749 3.6071 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0844 5.77 0.0001 
CORR 2 0.8334 114.11 0.0001 
MEAS. CORR 8 0.0051 0.17 0.9942 
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significant. Though the mean classification accuracy of 
the probit method decreases by 0.0748 which is greater 
than 0.0674 by which the mean classification accuracy of 
the ID3 method decreases as 1-I is replaced by H-H, the 
impact of the magnitude of correlations on the relative 
performance of ID3 to probit is not statistically signi- 
ficant. ID3 builds the classification tree by sequentially 
selecting new attributes. Newly added attributes may not 
improve the existing classification performance if they 
are highly correlated to already selected attributes. 

A two-way ANOVA is conducted on probit and ID3 
separately to provide a detailed analysis of the impact of 
measurement scale and correlation structure on the 
classification behavior of each of classification methods. 
The results of two-way ANOVA for the probit method 
are summarized in Table 6. The main effects of the 
treatment factor MEAS and the blocking factor CORR 
are significant. This confirms that the classification 
accuracy of the probit method significantly decreases as 
the proportion of binary variables increases in the 
classification model. The classification accuracy of the 
probit method decreases gradually from 0.8633 to 0.8353 
as the numeric variables are replaced by the nominal 
variables. This trend is consistent across three levels of 
correlation structure as shown in Table 2. The statistical 
significance of CORR shows that the correlation struc- 
ture affects the classification performance of the probit 
method. The interaction effect of MEAS*CORR is not 
significant. This statistical insignificance of MEAS- 
* CORR confirms the consistent trend. 

The analysis reported in Table 6 examined the 
combined effect of the magnitude of correlations and the 
equality of covariance matrices on the classification 
performance of the probit method. The separate analysis 
of the impact of the magnitude of correlations and the 
equality of covariance matrices is conducted. Table 7 
summarizes the ANOVA study in which the correlation 

structure consists of two levels 1-1 and 1-41. The main 
effect of MEAS is significant as in Table 6. The main 
effect of CORR is significant. This shows that the 
classification accuracy of the probit method is sign- 
ificantly lower when the variances are unequal among 
populations than when the variances are equal among 
populations. The interaction effect of MEAS* CORR is 
not significant. 

The impact of the magnitude of correlations and 
measurement scale on the classification performance of 
the probit method can be analyzed by the ANOVA results 
in Table 8 in which the correlation structure consists of 
two levels 1-1 and H-H. The main effect of MEAS is 
statistically significant (at 5% level) but less significant 
than that in Table 7. The main effect of CORR is 
statistically significant and more significant than that in 
Table 7. This implies that the classification accuracy of 
the probit method significantly decreases as the correla- 
tions among explanatory variables increase. The 
interaction effect of MEAS*CORR is not significant. 
The ANOVA results from Tables 7 and 8 imply that both 
the magnitude of correlations and the equality of 
covariance matrices affect the classification performance 
and that the magnitude of correlations has more impact 
on the classification performance of the probit method 
than does the equality of covariance matrices. 

The two-way ANOVA results for ID3 are presented in 
Table 9. The main effect of MEAS is significant (at 5% 
level). The mean classification accuracy of the ID3 
method increases gradually from 0.8216 to 0.8428 as the 
numeric variables are replaced by the nominal variables. 
The trend of increasing performance of ID3, as the 
numeric variables are replaced by the nominal variables, 
persists across three levels of correlation structure. The 
main effect of MEAS is less significant than that in case 
of probit (Table 6). The main effect of CORR is 
significant, which implies that the correlation structure 

TABLE 7 
Two-way ANOVA for Probit (Corr:/-/and I-4/) 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 2 I-I,  1-41, H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 9 0.6125 0.0681 19.18 0.0001 
Error 490 1.7384 0.0035 
Corrected total 499 2.3509 

Source d.d. ANOVA SS F Pr 

MEAS 4 0.0690 4.86 0.0008 
CORR 1 0.5405 152.36 0.0001 
MEAS*CORR 4 0.0030 0.21 0.9313 
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TABLE 8 
Two-way ANOVA for Problt (Corr:/-/and H-H) 

Class Levels Values 

MEA-S 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 3 I-I, 1-41, H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 9 0.7526 0.0836 22 .1  0.0001 
Error 490 1.8486 0.0038 
Corrected total 499 2.6012 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0504 3.34 0.0103 
CORR 1 0.6994 185.39 0.0001 
MEAS* CORR 4 0.0028 0.19 0.9451 

significantly affects the classification performance of the 
ID3 method like it does the probit method. The 
interaction effect of MEAS*CORR is not significant, 
which confirms that the classification behavior of ID3 is 
consistent across different levels of measurement scale. 

The preceding analysis for ID3 examined the com- 
bined effect of the magnitude of correlations and the 
equality of covariance matrices. The effect of the 
equality of covariance matrices can be investigated 
separately from the effect of the magnitude of correla- 
tions. The results of  ANOVA study in which the 
correlation structure consists of two levels I-1 and 1-41 

are summarized in Table 10. The main effect of MEAS is 
not significant. The main effect of CORR is significant, 
which implies that the equality of covariance matrices 
affects the classification performance of the ID3 method 
like the case of the probit method. The interaction effect 

of MEAS* CORR is not significant. 
Table 11 summarizes the results of ANOVA study in 

which the correlation structure consists of two levels 1-1 
and H - H .  The main effect of MEAS is significant (at the 
5% level). The smaller effect of MEAS in Table 10 is 
mainly because the classification performance of ID3 is 
not much affected by the measurement scale under 1-41. 

The classification accuracy of ID3 increases by 0.0100 
under 1-41 as the numeric variables are replaced by 
nominal variables while the classification accuracy of 
ID3 increases by 0.0320 under I - I  and by 0.0216 under 
H - H .  The main effect of CORR is significant and more 
significant than that in Table 10. This shows that both the 
magnitude of correlations and the equality of covariance 
matrices affect the classification accuracy of the ID3 
method and that the magnitude of correlations has more 
impact on classification accuracy of ID3 than does the 

TABLE 9 
Two-way ANOVA for ID3 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 3 I-I, 1-41, H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 14 0.6453 0.0461 11.87 0.0001 
Error 735 2.8538 0.0039 
Corrected total 749 3.4991 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0411 2.64 0.0326 
CORR 2 0.5921 76.25 0.0001 
MEAS* CORR 8 0.0121 0.39 0.9262 
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TABLE 10 
Two-way ANOVA for ID3 (corr: /- /and /-4/) 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 2 I - I ,  H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 9 0.3003 0.0334 8.62 0.0001 
Error 490 1.8972 0.0039 
Corrected total 499 2.1974 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0268 1.73 
0.1425 
CORR 1 0.2636 68.06 0.0001 
MEAS*CORR 4 0.0099 0.64 0.6333 

equality of covariance matrices. The interaction effect of 
MEAS * CORR is not significant. 

5. CONCLUSION 

This is a comparative study of statistical and inductive 
learning methods. The focus of this study is to investi- 
gate the impact of measurement scale of explanatory 
variables on the relative performance of the ID3 method 
and the probit method and to examine the impact of  
correlation structure on the classification behavior of the 
ID3 method and the probit method. 

The simulation results show that the relative classi- 
fication accuracy of the ID3 method to the probit method 
increases as the proportion of binary variables increases 
in the classification model and that the relative classifica- 
tion accuracy of the ID3 method to the probit method is 

higher when the covariance matrices are unequal among 
populations than when the covariance matrices are equal 
among populations. The results also reveal that the 
classification accuracy of the ID3 method is lower when 
the covariance matrices are unequal among populations 
than when the covariance matrices are equal among 
populations and that the classification accuracy of the 
ID3 method decreases as the correlations among explan- 
atory variables increase. The empirical results about the 
classification behavior of probit are consistent with those 
from previous studies. 

The research findings of this paper provide a partial 
answer to why inductive learning methods performed 
better than statistical models in some of previous studies 
and why inductive learning methods performed worse 
than statistical methods in other studies. The implication 
of this study for classification research is that inductive 

TABLE 11 
Two-way ANOVA for ID3 (corr:/-/and H-H) 

Class Levels Values 

MEAS 5 INT, M6-2, M4-4, M2-6, NOM 
CORR 2 I- I ,  H - H  

Dependent Variable: ACCU 

Source d.f. SS MS F Pr 

Model 9 0.6176 0.0686 18.34 0.0001 
Error 490 1.8338 0.0037 
Corrected total 499 2.4515 

Source d.f. ANOVA SS F Pr 

MEAS 4 0.0460 3.07 0.0162 
CORR 1 0.5672 151.55 0.0001 
MEAS*CORR 4 0.0046 0.31 0.8729 
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learning methods may be more appropriate when 
researchers deal with qualitative variables and that the 
inductive learning method may not be a good alternative 
to the statistical method when the explanatory variables 
under consideration are mostly quantitative. Another 
implication of this study is that the ID3 is likely to be a 
good alternative to statistical methods when the correla- 
tion structures significantly differ among groups. 

This study has some limitations. First, this study uses 
only simulated data. Simulation allows researchers to 
manipulate data conditions and enhance internal validity, 
which makes the results more generalizable. However, 
the limitation of simulation is the lack of real world 
implications inherent in the artificial data. The results of 
this study using simulated data need to be tested by using 
real world data in the future study. 

This study only considers the measurement scale of 
attribute and correlation structure. There are various 
factors which possibly affect the relative performance of 
inductive learning and statistical methods besides meas- 
urement scale of attribute and correlation structure. 
Examples include the number of attributes, the number 
of categories in an attribute, the number of classes, noise, 
the sample size, the underlying distribution of popula- 
tion, etc. Future studies are expected to compare 
inductive learning and statistical methods with respect to 
these factors and identify the relative strength and 
weakness of two approaches. 

This study compares only two methods, the probit 
method and the ID3 method which are representative of 
statistical classification techniques and inductive learn- 
ing methods respectively. There are various techniques 
for classifications available from statistics and inductive 
learning. A more extensive study including statistical and 
inductive learning methods other than probit and ID3 is 
expected to be conducted for generalization. 

This study is about the exclusive choice of either 
method. An emerging issue of interest is the integration 
of inductive learning and statistical methods. Inductive 
learning and statistical methods have different strength 
and weakness. Therefore, a proper integration that takes 
advantages of the strengths of two approaches may 
enhance the classification performance. 1~ The results of 
this study suggest a way of integrating inductive learning 
and statistical methods for mixed data. It is to apply the 
inductive learning method to the nominal variables, 
apply the statistical method to the numeric variables, and 
then combine the results from the two methods. Future 
studies need to develop an integrated algorithm or 
procedure which can perform better than the separate use 
of two approaches by utilizing comparative studies of 
inductive learning and statistical methods. 

II Refer to Liang, Chandler, & Han (1990) for discussions of the 
general framework and research issues for integrating statistical and 
inductive learning approaches. Liang (1992) reported a significant 
performance improvement by an integration of two approaches called 
CRIS (Composite Rule Induction System). 
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